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Abstract

Low Temperature Combustion (LTC) regimes have gained attention in internal com-
bustion engines since they deliver low nitrogen oxides (NO,) and soot emissions with
higher thermal efficiency and better combustion efficiency, compared to conventional
combustion regimes. However, the operating region of these high-efficiency combus-
tion regimes is limited and these combustion regimes are prone to knocking and high
in-cylinder pressure rise rate outside the engine safe zone. By allowing multi-regime
operation, high-efficiency operating region of the engine is extended. To control these
complex engines, understanding and identification of different patterns of heat release
rate shapes is essential. Experimental data collected from a 2 liter 4 cylinder LTC
engine with in-cylinder pressure measurements, is used in this study to calculate Heat
Release Rate (HRR). Fractions of early and late heat release are calculated from HRR
as a ratio of cumulative heat release in the early or late window to the total energy
of the fuel injected into the cylinder. Three specific HRR patterns and two transition
zones are identified. A rule based algorithm is developed to classify these three pat-
terns as a function of fraction of early and late heat release percentages. Combustion
parameters evaluated also showed evidence on the robustness of classification. Super-
vised and unsupervised machine learning approaches are also evaluated to classify the
HRR shapes. Supervised learning method ( Decision Tree)is studied to develop an

automatic classifier based on the control inputs to the engine. In addition, supervised

XXX1



learning method (Convolutional Neural Network) and unsupervised learning method
(k-means clustering) are studied to develop an automatic classifier based on real time
heat release trace obtained from the engine. The unsupervised learning approach
wasn’t successful in classification as the arrived k-means centroids didn’t clearly rep-
resent a particular combustion regime. Supervised learning techniques, Convolutional
Neural Network (CNN) method is found with a classifier accuracy of 70% for identi-
fying heat release shapes and Decision Tree with the accuracy of 74.5% as a function
of control inputs. As supervised machine learning approaches are built on rule based

classified traces, it is also further used as reference to model the classifiers.

On classified traces with the use of principle component analysis (PCA) and linear
regression, heat release rate classifiers are built as a function of engine input param-
eters including, Engine speed, Start of injection, Fuel quantity and Premixed ratio.
Prediction accuracy of HRR classification with modelled parameters is observed to
be over 85% for all the three major patterns of interest. The results are then used to
build a linear parameter varying (LPV) model as a function of the modelled combus-
tion classifiers by using the least square support vector machine (LS-SVM) approach.
LPV model could predict CAzy(Combustion phasing), IMEP (indicated mean effec-
tive pressure) and MPRR (maximum pressure rise rate) with a RMSE of 0.4 CAD,
16.6 kPa and 0.4 bar/CAD respectively. The designed LPV model is then incor-
porated in a model predictive control (MPC) platform to adjust CAsg, IMEP and

MPRR. The results show the designed LTC engine controller could track CAsy and

XXX11



IMEP with average error of 1.2 CAD and 6.2 kPa while limiting MPRR to 6 bar/-
CAD. The controller uses three engine inputs including, start of injection, premixed
fuel ratio and fuel quantity) as manipulated variables, that are optimally changed by
variation in the engine scheduling parameters based on the LTC engine heat release

shapes.
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Chapter 1

Introduction

Greenhouse gas emissions in atmosphere have increased world wide. In the latest
report by the United States Environmental Protection Agency (EPA), it is evident
that transportation sector is one of the major contributors of greenhouse gas emissions
in the United States [7]. EPA and other emission regulating agencies across the world
have taken measures to curb the pollutants. They have imposed stringent emission
norms and higher fuel economy targets. Automotive manufacturers and researchers
have continuously worked to innovate new techniques in order to achieve emission
and fuel economy targets. Many concepts have been developed to eliminate the
drawback observed on a conventional injection technique. In the conceptual model of
conventional direct injection (DI) combustion in [§] the process involved in creation

of NO,, and soot is described. NO, gets created at the contact of diffusion flame front



with premixed charge. Soot gets generated at the fuel rich zones of the fuel plume.
Based on this understanding a recent technique of low temperature combustion(LTC)
was developed. It results in ultra low NO, and soot as significant amount of fuel is
pre-mixed with air before the actual combustion begins. Soot is eliminated by having
a premixed mixture of fuel and air. NO, is reduced by having a premixed volumetric
combustion [9].Multiple concepts of LTC demonstrated by researchers [2 [9] 10, [11],

either used single fuel or combination of two fuels.

Some of the prominent techniques of LTC are shown in the Figure[l.1], in local equiv-

alence ratio and temperature space.

6
o
@ 5
D
©
B 4
8 Conventional
c RCCI .
o Diesel
© 3 Combustion
>
= PCCl
o 2
L HCCI
8
Q
—

0 .

1400 1800 2200 2600 3000

Local Temperature [K]

Figure 1.1: Soot and NO, in equivalence ratio to Temperature space ref-
erence [12] Adapted from reference [13]



Interestingly, conventional diesel operates in a zone which is prone for higher NO,
and soot. Advanced combustion techniques depicted, predominantly operate on a
lower NO,. and soot zone. Various Combustion regimes of interest and research work

is described below.

T Homogeneous charge compression ignition (HCCI) is a concept in which fuel
is injected into intake manifold to achieve a homogeneous premixed charge.
Charge is compressed in the compression stroke. It results in controlled auto
ignition (CAI). So, a volumetric combustion with a small burn duration is

achieved [14] [I5]. It results in high in cylinder pressure rise rate.

T Premixed charge compression ignition (PCCI) was developed from HCCI con-
cept to reduce its drawbacks of higher pressure rise rate. In PCCI, fuel is in-
jected partially in the manifold and in-cylinder in order to reduce homogeneity
of fuel and air, [16, 17, [18]. Secondary fuel injection timing adds more control

on combustion phasing.

T Reactivity controlled compression ignition (RCCI) works on the principle of
difference in reactivity rates of two different fuels being used for combustion.
The low reactivity fuel is injected into the intake ports. In the homogeneous
mixture of low reactivity fuel and air, the high reactivity fuel is injected inside
the cylinder. Studies in references, [19, 20, 21] discuss additional control levers

for governing combustion phasing such as difference in reactivity of both fuels,



start of injection timing of the higher reactivity fuel and the ratio of both low

reactivity and high reactivity fuel on the engine.

Understanding of these low temperature combustion techniques play critical role in
order to study the heat release traces of the engine and incorporate the dynamics

involved while developing engine models.

1.1 Engine modelling for controls

Internal combustion (IC) engine modelling techniques have gained attention as it
could improve engine performance. It could predict engine performance parameter
without physically running the engine and also estimate parameters which are difficult
to be measured [22]. Automotive manufacturers are keen to improve accuracy of
engine model as it saves money and product development time. Control oriented
models are advanced mathematical models suitable for control system design. It is

built based on two fundamental methods

1 First principle based approach

1 Data driven approach

In first principle based approach, model is primarily based on physical principles.



Additionally engine experimental data is used to parameterize engine models. This
helps to closely represent the engine. Input-output models and first principle based
models are inter dependent on each other to ensure accuracy of the engine model. In
[23] reviewed advancement in engine modelling. Improved engine model has resulted
in better control of engine. The model was developed for performance optimisation

of steady state calibration and dynamic corrections to calibration.

First principle based approach is time consuming to build. As an alternative, data
driven approach has gained significance. In [24] data driven approach, the relation-
ship between inputs and outputs of the system is modelled, without complex physics
based modelling of the system. Data driven modelling represent the significant con-
tribution made by the fields, artificial intelligence (AI), Computational intelligence
(CI), soft computing (SC), machine learning (ML), data mining (DM) and intelligent
data analysis (IDA). Data driven modelling approach focused in this research work
is based on machine learning based techniques. Machine learning theory is about
building a model capable of learning to improve its own performance based on its
previous experience. It uses pattern recognition and statistical inference to come up
with a conclusion. The study in [25] discussed approaches using machine learning to
make engine modelling process faster. The results showed that data driven models
demonstrated better performance than physical models by its ability to capture non-
linear trends and pattern in the data. It is recommended in a scenarios where data

is incomplete to build a physical model. Machine learning approach has been widely



used in the literature for modelling engine by utilizing engine experimental data.

Next sections discuss on the current research work on identification of combustion
events, system identification of the engine through machine learning approach and

control of the engine.

1.2 Machine learning based approach for combus-

tion classification

Combustion identification in ICEs can be studied by analyzing in-cylinder pressure
data. In-cylinder pressure measurement with a piezoelectric sensor mounted on the

engines, is a conventional approach for off-line analysis of combustion process.

Various combustion metrics listed in Figure[I.2]can be analysed with machine learning
techniques. With machine learning algorithm, misfire event identification was done
by analysing the vibration pattern associated with particular cylinder in [26]. Iden-
tification of misfire events is closely tied to identification of patterns in combustion
trace, which corresponds to misfire. Linear model tree algorithm was suggested to
have better classification accuracy compared to other algorithms considered in [26].
Similarly, with the vibration measurement data from the engine, classifier accuracy

was compared in [27], between convention feature extraction approach with support
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Figure 1.2: Combustion metrics

vector machine (SVM) and deep learning convolutional neural network (CNN) with-
out feature extraction. Deep learning approach was observed to perform better better

compared to CNN with feature extraction and SVM for multi-class misfire detection.

In [28] have listed deep learning techniques with 2-D convolutional neural network,
which could extract features to identify combustion instability. This could help in
identifying and preventing the occurrence of poor combustion. Discussed in [29] is
a novel method of building adopted artificial neural network(ANN) model from the
empirical model. The developed model showed an accuracy of 85% as mean prediction
accuracy. In [30], developed a misfire detection technique for an HCCI engine. Misfire
was created by cutting the fuel supply, varying air to fuel ratio (AFR) and low air

intake temperature. Engine powered with ethanol by using experimental data to



model ANN for misfire detection. ANN is modelled using the in-cylinder pressure
value modeled using regression equation using maximum heat release rate (MHRR)
at crank angles, 0, 5, 10, 15 and 20 aTDC. The ANN model developed with four
hidden layers using in-cylinder pressure was able to detect the misfire with 100%

accuracy.

In [3I], a misfire identification technique for HCCI engine fueled with ethanol was
carried out. Skewness and kurtosis of in cylinder pressure and crankshaft rotational
speed were analysed. Result showed that on all misfire cycles, engine speed showed
negative skew values. In [32], to improve the operating range of the HCCI engine,
the authors studied cyclic variation of CA50 near misfire region to extend the range
of operation. Return map and symbol sequence approach was used to statistically
model the system and a joint prediction of CA50 one cycle ahead was conducted.
The residual between predicted and actual data was in the 95% confidence interval

and hence model prediction is acceptable.

In [33], the authors discussed about limited operating range of HCCI due to higher
pressure rise rate and ringing. Ringing intensity (RI) increased with lower burn
duration and advanced CA50. ANN model was built with in-cylinder pressure values
at 5,10 and 15 CAD aTDC and Pmax to predict RI with prediction error of 4.2%.
In [34], intense ringing in an HCCI engine, which limits the range of operation was

studied. To this end a ANN based approach was designed to predict the combustion



noise level to identify ringing regions. The model was able to predict with an error

of less than 0.5% from the actual combustion noise level.

Extreme learning machine (ELM) are feed forward neural networks for classification
[35] with extremely fast learning speed. So, was named as ”Extreme learning ma-
chine”. ELM is single hidden layer feedforward neural networks which randomly
chooses hidden nodes and analytically determines the output weight. In theory [35],
algorithm provides good generalization performance at extremely fast learning speed.
ELM was used to model a bio-diesel engine performance. In [36], optimisation of
engine was carried out using logarithmic transformation to reduce the impact of data
scarcity in real time. The result was concluded based on the comparison of engine
model between two optimization techniques, simulated annealing (SA) and particle

swam optimisation (PSO).

Engine ignition pattern analysis is one of the diagnostic method for gasoline engines.
In [37], wavelet packet transform was used to extract features from the ignition pat-
tern. Based on identified features, then a multi-class least square support vector
machine (MCLS-SVM) was used to identify fault related to malfunctioning parts of
engine. Diagnosis accuracy of MCLS-SVM was higher than the typical MLP (multi

layer perceptron) approach in the experimental results.

In [38], studied about fault diagnosis for process monitoring in industrial environ-

ment. In process monitoring, unsupervised learning approach on multi dimensional



data for clustering result was slow due to the curse of dimensionality and result in un-
related features existence. Dimensionality reduction was carried out using Principal
Component Analysis (PCA). PCA is an approach for feature extraction by creation
of new independent variable which is a combination of the old variables. Engine
output parameters are dependent on many input variables. PCA can help reduce
dimensionality of the data by generating new independent variables,also known as
principal axes. Multi-linear extensions of PCA was observed to be effective in reduc-
ing the dimensionality to result in better separation of clusters. Also, the study in the
reference article[39] show that vibration measurement from the engine was used to
identify fault on engine related to defective lash adjuster and chain tensioner. Based
on the severity of measured vibration, it could identify and classify fault into specific
fault domain. The smooth variable structure filter (SVSF) algorithm outperformed in
comparison with other approaches and showed a success rate of 97% in the detecting

the faults.

With the study on reference articles, its evident that a lot of research has been done in
order to identify misfire and fault diagnostics on engine, but significant study hasn’t
happened in terms of characterizing the combustion traces to identify heat release
patterns. This in turn opens up a large scope of work in terms of classification of
combustion traces on a multi-mode engine. Once classification of combustion traces
is done, an effective method of integration of this information into real-time system

identification is done and the combustion control for the engine will be required.
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Thus, in the subsequent section prior studies in terms of system identification and

control of engine combustion are reviewed.

1.3 Machine learning approaches for ICE combus-

tion modeling and control

Multiple machine learning techniques have been explored to build engine models
that are compatible for ICE controls. In [40], HCCI engine powered with butanol
and ethanol was studied. Engine powered with butanol, n-heptane and ethanol was
modelled with feed forward neural network (FFNN) and radial basis function neu-
ral network (RBFNN). Multiple-input and multiple-output (MIMO) neural network
developed showed that both approaches were able to predict the engine performance
metrics including indicated mean effective pressure (IMEP), thermal efficiency, in-
cylinder pressure, net total heat released, nitrogen oxides (NO,), carbon monoxide
(CO), and total hydrocarbon (THC) concentrations with error less than 4%. With
the fact that FFNN involved less complex equation in comparison to RBFNN, which

involved complex equations but needed less training time.

In [41], a high accuracy models with low computational effort for HCCI engine was

built. The authors in reference [41] developed a gray box modelling technique that
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used a combination of physical model with artificial neural network (ANN) feed for-
ward model for the prediction of CA50, IMEP and exhaust gas temperature (Texh).
Developed model predicted CA50, IMEP and Texh with an accuracy of less than 1
crank angle degree, 0.2 bar and 6°C, respectively. In [42], prediction of engine rota-
tional dynamics was done using a gray box model that consisted of a physical mode
and a black box ANN. The authors studied 2 gray box architectures: series and paral-
lel. Gray box model with series structure was identified and found to perform better
than the parallel approach. In [43], discussed that HCCI engines could be brought to
practical use if the drawbacks on high THC and CO is reduced by controlling CAsq
for lower emissions and higher thermal efficiency. Gray box modeling as a combina-
tion of both physical and feed forward artificial neural network (FFANN). Model was
build for two different HCCI engines. The model could predict combustion phasing,
load, exhaust gas temperature and emissions (THC, CO, NO,) with the validation

on steady state and transient test prediction error resulted in less than 10%.

In [44], optimisation of bio diesel engine engine model was built using kernel based
ELM technique. By use of cuckoo search (CS), optimal bio-diesel ratio with mini-
mization cost function for both fuel cost and emissions. The results were compared
with LS-SVM. It was concluded that K-ELM achieves comparable result and optimi-
sation with CS results in reliable prediction and optimisation. In [36], optimisation of

bio-diesel engine with less emissions was evaluated with ELM, least-squares support
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vector machine (LS-SVM) and RBFNN approach to model the engine. It was evalu-
ated with two optimization methods, namely simulated annealing (SA) and particle
swarm optimization (PSO) as optimisation function to result in optimal bio-diesel
ratio. ELM with logarithmic transformation model was observed to perform faster
and better. PSO as an optimisation algorithm performed better with cost function

on fuel cost and lower emissions.

In [45], evaluated the prediction capability of the ANN model built for an engine
operated with exhaust gas re-circulation (EGR) strategies. It was built with 70%
experimental data, 15% for cross validation to avoid overfitting and other 15% for
testing the model accuracy in prediction. With the inputs- load, rail pressure, EGR%
and fuel, model could predict the performance and emission parameters with high cor-
relation, it was also able to map the trade off between PM-NO,-brake specific fuel
consumption (BSFC) under operation with EGR. In [46], authors studied that engine
operating on transient condition based on steady state tuned tables may not result in
optimal performance. To mitigate this issue, authors built a real time system capa-
ble of perceiving driver, driving pattern and optimize performance by using Markov
decision process. It resulted resulted in overall 9.3% improvement in fuel economy
compared to baseline calibration by the use of decentralised learning to optimize fuel
economy and emission by varying variable geometry turbocharger (VGT) position

and injection timing, .

13



In [47], a control oriented model was built to control combustion timing, engine load
and combustion efficiency for an HCCI engine. Detailed physics based model was
developed including effect of residual gases and rate of fueling on model out put pa-
rameters (combustion timing, engine load and combustion efficiency). Model could
perform with acceptable accuracy in both steady state and transient validation. [4§]
is based on combustion timing and load control of HCCI engine. Nonlinear control
oriented model (NCOM) developed was linearized and integral discrete time slid-
ing mode controller (IDSMC) was built to control load and combustion timing. Its
performance was compared to manually tuned proportional- integral (PI) controller.
IDSMC showed better tracking efficiency and also responded well to the introduction
of disturbance in equivalence ratio and intake temperature. In [49], combustion analy-
sis comparison of performance between DI engine and bio-diesel with waste vegetable
oil was compared on similar operating conditions. ANN model was built to model
the engine characteristics operated with waste vegetable oil from the experimental

results and IDSMC performed better in tracking efficiency.

RCCI promising for its high thermal efficiency but comes with a need of high accu-
racy control oriented model and control technique. Approach of data driven linear
parameter varying model, built based on support vector machine was developed in
[50]. The model could be built fast and model could track CAsy for change in load
with less than 1 CAD when built with a model predictive controller (MPC). The

linear parameter varying (LPV) model is built as a function of fuel quantity. In [51],
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model based control was developed and trajectory optimised for lower emissions was
fed as reference. The computational requirement of the gray box model was 1 ms in
a 2.67GHz processor. Controller ability to track optimum trajectory for IMEP and
CAB50 was tested and verified. In [52], automated the proportional-integral-derivative
(PID) system tuning by using simulator CARLA, an open source simulator . Model
was evaluated for performance on the governing the engine idle speed. The method
performed better than typical tuning process of the PID parameters and better results

both in simulation and in practice.

LPV modelling approximates the non linear system with a state space structure suit-
able to build linear controller on it. In [6, 50], method of developing LPV model based
on support vector machine is proposed. The study in [50] demonstrated system iden-
tification capability using the above technique for control of combustion phasing of
the RCCI engine. In addition to [50], capability of this technique for modelling maxi-
mum pressure rise rate (MPRR) is discussed in [5]. The limitation of this approach is
only 2 manipulated variables start of injection (SOI) and fuel quantity were available

to achieve control on combustion phasing and IMEP.
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1.4 Shortcomings of literature

The review in Section and [I.3] showed prior studies into extracting features of
combustion parameters from the in-cylinder pressure traces, vibration measurements
or identifying engine combustion related fault, but the area of identifying the heat
release rate patterns from engine data for the control of a multi-mode LTC engine
remains under explored. Identifying pattern of heat release rate in combustion events

will be critical to optimally control operation of multi-mode LTC engines.

The review in Section [I.3] discussed various machine learning and deep learning
approaches in practice for ICE modelling and control. However there is no integrated
machine learning and control method based on engine heat release shapes for LTC
engines. In particular one promising area is the application of machine learning based
LPV models for MPC control of LTC engines based in identifying varying heat release

shapes.

1.5 Scope of Research

Based on the shortcomings listed in Section the scope of the thesis is defined

as: Machine learning approach is suggested for building accurate model of IC engine.
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Numerical simulation capability of the technique will help to improve modelling capa-
bility. A real time predictive control on a cycle to cycle basis, to optimize combustion

mixture formation and improve stability of combustion.

Scope of the research is listed as :-

1 Study machine learning algorithm and develop an algorithm to classify the heat
release rate patterns in an LTC engine. This would form the basis in identi-
fication of heat release rate patterns which can be used for engine combustion
control. Model classification with machine learning technique would also help
assess if the classification problem could be solved with higher prediction accu-

racy.

T Analyze experimental data from an LTC engine to determine between heat
release pattern and engine control variables. The results from this study will

be used to determine optimum scheduling parameters for engine controls.

1 Create a machine learning based control oriented model to predict CAsy, IMEP

and MPRR for an LTC engine

1 Design and verify optimal predictive combustion controller for a LTC engine to
adjust engine load and combustion phasing, while meeting MPRR and actuators

constraints.
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1.6 Organization of Thesis

Experimental setup of engine is discussed in Chapter 2. Machine learning approach
used for classification, results and its accuracy are discussed in Chapter 3. Identi-
fication of combustion classifier, discussed in Chapter 4 and building of LPV- SVM
model as a function of it as scheduling parameter is discussed in Chapter 5. Building
a MPC control structure to control combustion phasing, IMEP with MPRR limita-
tion is covered in Chapter 6. Conclusion and future work are listed in Chapter 7,
followed by sections of appendix including data files and other relevant details of the

thesis.
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Chapter 2

Experimental Setup

Engine experimental data is required in order to study and classify LTC heat release
shapes and identify appropriate schedulign parameters for LTC engine control. Spec-
ifications of the engine, test cell layout and data acquisition are explained in this

chapter.

2.1 Engine Specification

This thesis uses a 2 Liter GM Ecotec engine with the specification listed in Table
[2.1] The engine is located at Michigan tech’s Advanced Propulsion Systems Research

Center (APSRC).
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Table 2.1
Engine Specifications

Make General Motors

Model Ecotec 2.0L Turbocharged
Engine Type 4 stroke,Gasoline

Fuel System Direct Injection

Number of Cylinders 4 Cylinders

Displaced Volume 1998 [cc]

Bore 86 [mm]

Stroke 86 [mm]

Compression Ratio 9.2:1

Max Engine Power 164 @ 5300 kW @Qrpm]
Max Engine Torque 353 @ 2400 [Nm Qrpm)]

Firing Order 1-3-4-2

IVO 25.5/-24.5 ["CAD bTDC(]
IVC 2/-48 [°CAD bBDC]
EVO 36/-14 [°CAD bBDC]
EVC 22/-28 [°CAD bTDC]
Valve lift 10.3[mm]

2.1.1 Engine Modifications

The engine is modified to demonstrate low temperature combustion concepts Figure
2.1l To this end, a dual fuel injection system is added to the engine as part of
the modifications. Engine is modified to have both iso-octane port fuel injection
(PFI) system and a n-heptane direct injection (DI) system. In the data used for
this research work, both fuels are used to vary the reactivity of the charge inside

the cylinder. Injection system calibration was carried out and documented in [2} 3].
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The engine setup also has a heater upstream of air intake, in order to vary intake air

temperature.
N-Heptane Tank Iso-Octane Tank »
Air
Controllable Air v
« Heater
& LP Fuel Air Throttle
HP Fuel PFI Rail
Pump
— N
- Encoder 460 hp AC
] &y |- — . Dynamometer
S B _
{ MicroAutobhox® @
\ ; e i ‘
= Monitoring 2
Exhaust
RapidPro® Laptep » C
Pressure . o, Pressure
Thermocouple ® Lambda Sensor “& Fuel Injector
6PTransducer ¢ ple ® ) “ Regulator

Figure 2.1: LTC engine setup in this work [4]

Iso-octane is the low reactivity fuel and n-heptane is the high reactivity fuel. Prop-

erties of these two fuels are summarized in Table 2.2

Table 2.2
Fuel Specifications

Property Iso-Octane N-Heptane
Higher Heating Value [MJ/kg] 47.77 48.07
Lower Heating Value [MJ/kg]  44.30 44.56
Density [kg/m?] 693.8 686.6
Octane Number [-] 100 0

22



2.2 Data Acquisition

Data from the engine is captured using 3 subsystems including, National Instruments
Labview, dSPACE and ACAP combustion analyser. The NI Labview gathered tem-
perature data from the engine. It also sends control commands to dynamometer
and the air intake temperature. dSPACE helped in sending control signals to var-
ious actuators on the engine. Injectors, spark plug and EGR valve control signals
are also provided by dSPACE. Calculations are preformed in Field Programmable
Gate Array(FPGA) as shown in [3] and communicated to RapidPro through a CAN.
dSpace also has a slave controller named micro auto box (MABX). Both RapidPro

and MABX together assist to control the engine.

. i ce Actuator
MicroAutoBox
Controls
and
RapidPro CA50, IME Pt
ACAP
———Pressure trace combustion
analyzer
Air Heater |
; Set point
NI LabView
Temperatures—

-_—

———————— Control Input

Speed

AC Dynamometer

————————p  Sensor Input

Figure 2.2: LTC Engine Data Acquisition from reference [5]
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ACAP is used to collect in-cylinder pressure traces from the piezo electric transducers-
115A04 transducers. The crank angle reference is gathered by encoder mounted on

the crankshaft of the engine.

2.3 Test data and Analysis

Engine data analysed in this research work was collected by varying independent
parameters like engine speed, fuel quantity, pre-mixed ratio, start of injection of n-
heptane, intake manifold temperature and intake manifold pressure. Pre-mixed ratio
(PR) is defined as the ratio of the energy of the low reactivity fuel to the energy of
the total fuel. The low reactivity fuel in current experiment is iso-octane and the

high reactivity fuel is n-heptane.

Table [2.3] summarizes independent parameters varied in the test. Parameter of inter-
est is in-cylinder pressure trace as a function of engine crank angle. At every steady

state operating point 100 cycles of data is collected.
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Table 2.3
Test conditions of engine data

Engine Speed | Fuel Quantity | Pre- mixed ratio SOI Intt ake maiufold

(rpm) (mg/st) (%) (bTDO) | L
20

800 10- 30 40 15-40 40-110
60
20

1000 10 - 40 40 20-100 40-110
60

1100 30 60 60-80 70-80
20

1200 10-40 40 28-80 40-110
60
20

1400 10-40 40 33-60 40-110
60
20

1600 20-40 40 40-60 40-110
60
20

1800 20-40 40 47-70 60-110
60
20

1900 20 53-60 80-90
40
20

2000 20-30 40 53-80 80-100
60
20

2100 20-30 A0 53-70 80-100

2300 20 20 65 80

2.3.1 Uncertainty Analysis

Level of confidence in the results comes based on the amount of uncertainty associated

with the measurement of data. Uncertainty arises in measured data due to numerous
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factors like instrumentation and operating conditions. Uncertainty associated with
various engine parameters are documented in Table from [2]. The uncertainties

Table 2.4
Table of measured parameters and associated uncertainties

Parameter[Units] Value Uncertainty(+/-)
Bore [m] 0.086 0.001

Stroke [m] 0.086 0.001

Cylinder Pressure [kPa] 95-4000 1%

Crank Angle [CAD] 0-720 1

Tinl® C] 4100 2%

P, [kPa] 05-105  0.5%

M fye MG/ St 11.0-40.0 0.1%

N [rpm] 800-2300 10

of the derived parameters are tabulated in Table from [2]

Table 2.5
Derived parameters and associated uncertainties

Parameter[Units]  Value + /- Uncertainty
CA 50 [CAD aTDC] -1 +/-1

IMEP [kPa] 540.7 +/- 28.1

MPRR [bar/CAD)] 12 +/- 0.6

2.4 Heat release rate calculation

In-cylinder pressure trace is collected on engine. The pressure transducers are capable

of measuring in range of 0-35000 psi and have sensitivity of 1.442 pC/psi. The pressure
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transducers measure relative pressure and process of referencing it to intake manifold
pressure is called pegging. Pressure signal is obtained as a function of crank angle
at an interval of 1 crank angle degree (CAD). In pressure trace, the noise associated
with it, has to be cleared off [53] before analysis for heat release rate. Based on the
work carried out by [3], a Butterworth low pass filter with a cut off frequency of 0.5

and order 1 was identified to filter pressure trace.

Further calculation of heat release rate is carried out by using first law of thermody-

namics and is given by Eq. ({2.1)).

dQ Y av 1 ar d@ht dchevice
o _ 1 pZl LTy 2.1
0 -1 a0 y—1 a8 T T ae (1)

Where v is a polytropic compression coefficient calculated from the compression re-
gion. Instantaneous volume ( V') at each crank angle is calculated by Eq. (2.2]). dQp

refers to heat loss to the walls. dQ.cvice Tefers to crevice loss and is neglected.

2

V(o) =V.+ .5 P(l+ a—acosd — /12 — (asinb?) (2.2)

Where B is the diameter of the bore, [ is length of the connecting rod, V, is the

clearance volume and « is the crank radius.

The phenomenon for the heat loss to the surrounding is attributed to the convective
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heat transfer, represented by Eq. (12.3).

dQne
de

— ho(T(6) — T.) (2.3)

Where T is the instantaneous temperature of charge inside the cylinder and T, is the
temperature of the cylinder wall. T is calculated by using the the ideal gas equation.
he, heat transfer coefficient is calculated by using the Woshini model which was later

modified by Chang [54] has been used in LTC combustion regimes.

With heat release rate calculated for each combustion trace, in Chapter 3, classifi-
cation of heat release type is carried out. Classification of heat release rate traces,
helps interpret and optimise combustion efficiency. Rule based and machine learning
based approaches are evaluated to identify the best approach to effectively classify

heat release trace.
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Chapter 3

Classification of heat release rate

traces

Machine learning provides a wide range of algorithms for classification. With refer-
ence to classification, a multi-class classification problem is being addressed here as
the heat release rate traces are intended to be grouped in three predominant com-
bustion phases and the fourth and fifth bins are accounted for the transition. On a
classification problem the main goal addressed is that the model should be capable
of predicting appropriate class for the given heat release trace. Classification model,
is trained to identify heat release rate traces by using either supervised or unsuper-
vised learning techniques of machine learning. Clusters of heat release types of a

multi-dimensional engine data is reduced to two dimensional space to identify critical
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parameter for classification. To start with classification algorithm problem, below are

the terminologies used in machine learning for defining the classification model:

T Feature, refer to measurable/ identifiable parameter of input.

1 Classifier is the learning algorithm that assigns the class to the data based on
its learning of the model from the training data. Classifier and Classification

model are used interchangeably in most of the cases.

Below is the procedure followed, for building a classification model:

1 Algorithm for classification is identified

T Training of the classifier for the given input (X) against the label (Y)

T Predict label (Y) for the input (X), from test data using trained model

7 Evaluate prediction accuracy

The data has to be labelled for classification using supervised learning approach,
where X refers to the heat release rate trace and Y refers to the labels of classification.
To avoid the impact of bias introduced by the use of threshold, unsupervised learning
approach is also evaluated by using k-means approach, in the later sections of this

chapter.
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3.1 Rule based Classification

Rule based classification of heat release rate trace is carried out based on the subject
knowledge. The classified data form basis for developing a supervised machine learn-
ing model subsequently. In order to classify the data, the crank angle at the start
and end of main heat release are identified for each of the HRR traces manually and

then logged into the data files.
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Figure 3.1: Heat release rate trace with Start and End of Main HR depicted

From the crank angle associated with start and end of main heat release by using

below relation, the percentage of heat release which happens before main is calculated
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using Eq. (3.1])) termed as Fraction of Early Heat Release.

Cumulative heat release from the SOI to Start of main

Fraction of Early Heat Release =
raction i Energy in the fuel quantity injected

(3.1)

The percentage of heat release that happens after the main heat release until CAg

is termed as Fraction of Late Heat Release and, is calculated by :

Cumulative heat release from the end of main HR to CAg

Fraction of Late Heat release = - —
Energy in the fuel quantity injected

(3.2)

The HRR traces are classified based on the fraction of early and late heat release
value. Based on the decision tree in Figure , the complete classification is arrived.
The threshold value for classification to denote different types of heat release rate is

obtained by analysis of the engine experimental data.
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Figure 3.2: Flowchart of Classification Algorithm
Summarized are few traces from each of the classification type in Figure depict-
ing 3 classification bins. Between Type 1, Type 2 and Type 3, separate classification
Type-4 and Type-5 are identified, to represent the combustion phase transition be-

tween the types. Filtered and normalised traces grouped in specific bins are depicted

in Figure 3.3
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Figure 3.3: Sample heat release rate traces for three main HRR patterns

Each classified type of HRR, group traces which show a unique pattern of combustion.

T Type 1 : Refers to a type of combustion observed in the HRR where it neither
has a significant premixed combustion nor a diffusion combustion. It is similar

to the combustion pattern observed in HCCI.

1 Type 2 : Refers to a type of combustion with HRR where it has a significant

premixed combustion. It is similar to PCCI type of combustion pattern.

1 Type 3 : Refers to a type of combustion with HRR where it has a significant

diffusion combustion. It is similar to combustion HRR pattern observed in

RCCL
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Summary of the count of HRR traces identified into each type is listed in Table [3.1

Table 3.1
Summary of the classified HRR traces

Type of HRR traces | Count of traces
Type 1 131
Type 2 71
Type 3 373

Distribution of COVyygp across the data points in Figure [3.4] is analyzed before

evaluating other combustion characteristics.
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Figure 3.4: Distribution of COVypypp

Majority of the traces are below the limit of 5% as shown in Table and Figure

3.4
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Table 3.2

Table of COV s gp distribution

Median | Mean | Standard deviation | Skewness | Kurtosis
%0 %0 %0 (-) (-)
Type 1 2.24 2.71 1.74 1.75 6.10
Type 2 4.19 5.36 3.09 1.8 7.13
Type 3 3.94 4.63 2.50 1.42 6.48

3.1.1 Characteristics of combustion type

Characteristics of classified combustion HRR traces are evaluated by looking into mul-

tiple combustion parameters and its statistical distribution across the traces grouped

into each type.

3.1.1.1 Peak Cylinder Pressure

In Figure the spread of peak cylinder pressure across 3 types of heat release is

plotted and in Table |3.3| statistical parameters of the each of the distribution are

summarized.
Table 3.3
Table of peak cylinder pressure distribution
Median | Mean | Standard deviation | Skewness | Kurtosis
kPa kPa kPa (-) (-)
Type 1 4329 4204 714.2 -0.72 2.73
Type 2 3924 3998 618.2 0.22 2.12
Type 3 3530 3561 417.7 0.31 2.73

Peak cylinder pressure is observed the highest in Type 1, followed by Type 2 and least
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Figure 3.5: Peak cylinder pressure distribution

in Type 3. It is the highest in Type 1, as the most of the fuel heat release happens in
the main heat release and least in Type 3 as significant amount of fuel burns after the
end of main heat release. Higher peak cylinder pressure is predominantly caused by
early combustion which can result in excessive noise and damage to the engine. Type
1 depicts traces with rapid heat release rate which is due to the rapid pressure rise
of the combustion mixture. A HRR trace of Type 1 at higher loads can potentially
lead to higher peak cylinder pressure. Since, Type2 and Type 3 depict controlled

heat release spread over a wider crank angle window, it results in lower peak cylinder

pressures.
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3.1.1.2 Maximum pressure rise rate

In Figure [3.6] the spread of maximum pressure rise rate across 3 types of heat release

is plotted and in Table statistical parameters of the each of the distribution are

summarized.
Table 3.4
Table of maximum pressure rise rate distribution
Median Mean Standard deviation | Skewness | Kurtosis
bar/CAD | bar/CAD bar/CAD () (-)
Type 1 5.77 5.65 2.47 27 2.44
Type 2 4.34 5.23 2.70 0.72 2.42
Type 3 3.93 4.05 1.14 0.53 3.11
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Figure 3.6: Maximum pressure rise rate distribution

Maximum pressure rise rate is observed the highest in Type 1, followed by Type 2 and

least in Type 3. Pressure rise rate is significantly governed by mixture reactivity at

the start of combustion. It is the highest in Type 1 as it depicts combustion kinetics

on a homogeneous mixture resulting in rapid heat release rate and pressure rise rate.
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In Type 2 and Type 3, as the flame front propagates, due to in-homogeneity of the
mixture a combustion pattern resulting in significant early and late heat release is

observed.

3.1.1.3 CA,

In Figure [3.7, the spread of crank angle at 10 percentage of total heat released in
an engine cycle across 3 types of heat release is plotted and in Table [3.5] statistical

parameters of the each of the distribution are summarized.

Table 3.5
Table of CAq( distribution

Median | Mean | Standard deviation | Skewness | Kurtosis
CAD CAD CAD (-) (-)
Type 1 5 4.58 5.58 -0.07 2.60
Type 2 -1 -1.88 5.66 -0.50 2.68
Type 3 4 4.03 2.00 -1.27 8.39
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Figure 3.7: CAqg distribution
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CAj( is observed earliest in Type 2, followed by Type 1 and Type 3. It can be
justified from the HRR trace of Type 2 from Figure due to the significant heat
release before the main heat release, it has the earliest CAyy. CAyq is significantly
affected by the ignition delay of the in-cylinder fuel and charge. All these three types
of HRR data points had iso-octane injected in the intake port and n- heptane direct
injected in cylinder. Based on the homogeneity of the mixture, the ignition delay

varied. HRR with least ignition delay resulted in Type 2, followed by Type 1 and

Type 3.

3.1.1.4 CAy

In Figure [3.8, the spread of crank angle at 90 percentage of total heat released in
an engine cycle across 3 types of heat release is plotted and Table [3.6] statistical

parameters of the each of the distribution are summarized.

Table 3.6
Table of CAgq distribution
Median | Mean | Standard deviation | Skewness | Kurtosis
CAD CAD CAD (-) (-)
Type 1 34 32.41 11.53 -0.76 3.28
Type 2 29 22.4 17.86 -0.18 1.38
Type 3 48 46.59 6.07 -0.42 3.11

CAyy is the earliest with Type 2, followed by Type 1 and the last with Type 3. It

is directly connected to the the pattern of heat release type and since type 3 has
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Figure 3.8: CAgyq distribution
significant late heat release, hence the value of CAgy is significantly higher than other
types. Homogeneity and ignition delay of the in-cylinder mixture plays a critical role
in CAgg. Combination of these two parameters result in Type 2 having the least CAgq
and with Type 3 which predominantly showed diffusion heat release pattern having

the highest CAgy.

3.1.1.5 Maximum in-cylinder temperature

In Figure [3.9] the spread of maximum in-cylinder temperature across 3 types of heat
release is plotted and Table statistical parameters of the each of the distribution

are summarized.

Higher in-cylinder temperature is observed in Type 1 as the rate of fuel burnt through

the main heat release is highest. It is followed by Type 2 and Type 3. Rapid pressure
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Table 3.7
Table of Maximum in-cylinder temperature distribution

Median | Mean | Standard deviation | Skewness | Kurtosis
K K K (-) (-)
Type 1 1812 1780 334 -0.35 2.60
Type 2 | 1494 1508 225 0.09 2.78
Type 3 1508 1536 241 0.36 2.95
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Figure 3.9: Maximum in-cylinder temperature distribution
rise observed in the Type 1 HRR pattern resulted in higher in-cylinder temperature
observed. In case of Type 2 and Type 3, they depict similar range of in-cylinder

temperature as both of these HRR patterns have comparatively slower heat release

rates and wider burn duration.

3.1.1.6 In-cylinder temperature at Start of main heat release

In Figure[3.10] the spread of in-cylinder temperature at the start of main heat release

across 3 types of heat release is plotted and Table statistical parameters of the of
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the distribution are summarized.

Table 3.8
Table of in-cylinder temperature distribution at start of main heat release
Median | Mean | Standard deviation | Skewness | Kurtosis
K K K ) (-)
Type 1 703 702 62.8 -0.07 2.74
Type 2 741 725 59.7 -0.06 2.39
Type 3 698 712 91.5 2.67 21.99
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Figure 3.10: In-cylinder temperature at Start of Main distribution

With Type 2 having early heat release, it is the highest while comparing in-cylinder
temperatures across start of main, followed by Type 1 and Type 3 together, as both of
them don’t depict any significant early heat release. In case of Type 1, the in-cylinder
temperature arrived at start of main is due to the impact of compression process on
the mixture. Similar, is the case with Type 3 pattern as well. Hence both of them
show lower in-cylinder temperature at start of main. But, in case of Type 2, some of
portion of the combustible mixture is already burnt, resulting in higher in-cylinder

temperature at the start of main heat release.
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3.1.1.7 In-cylinder temperature at End of main heat release

In Figure the spread of in-cylinder temperature at the end of main heat release
across 3 types of heat release is plotted and Table statistical parameters of the of

the distribution are summarized.

Table 3.9
Table of in-cylinder temperature distribution at end of main heat release

Median | Mean | Standard deviation | Skewness | Kurtosis
K K K (-) (-)
Type 1 1781 1758 323 -0.32 2.62
Type 2 1478 1495 220 0.04 2.55
Type 3 1447 1448 189 0.33 3.30
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Figure 3.11: In-cylinder temperature at end of Main distribution

With Type 1, most of the fuel is burnt in the main heat release, which results in it
being the highest of all 3 types while comparing in-cylinder temperatures across end

of main. It is followed by Type 2 and Type 3 in close range.At the end of main heat
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release, the complete mixture has undergone a constant volume heat release over a
smaller burn duration in Type 1. It has resulted in higher in-cylinder temperature at
the end of main heat release. Even in case of Type 2, most of the fuel is burnt by end
of main heat release, but since the burn duration is wide the heat losses associated
resulted in lower in-cylinder temperature. In Type 3, CAgg values also indicate that
comparatively less percentage of fuel is burnt by end of main heat release. Hence, it

also resulted in lower in-cylinder temperature.

3.1.1.8 Exhaust gas temperature

As Type 3 traces have significant late heat release and lower heat loss to coolant, the
exhaust gas temperature of these traces will be the highest in comparison with the
other two types. It is followed by Type 1 and Type 2 as neither of them have higher

late heat release percentage.

3.1.1.9 Engine out emissions

Engine exhaust emission data was not available to compare the three combustion
types in this thesis. Here, the expected emission trend is explained by looking at the
data available from the literature. In [55] it is clearly documented that change in

heat release shapes critically impact the engine out emissions. Inferences from the
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articles are discussed below, where comparison is being made between HCCI, PCCI

and RCCI combustion type.
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Figure 3.12: Heat release types comparison [55]

The fuel type used for comparison is diesel and gasoline. The classified heat release
rates in the article, HCCI, PCCI and RCCI are similar in nature to the heat release

types being targeted in the major classification HRR types 1, 2 and 3.
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Figure 3.13: HC emission [55] Figure 3.14: CO emission [55]

The data in Figure and [3.14], shows that unburned HC and CO emissions are
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significantly higher in RCCI owing to crevice flow of low reactive gasoline fuel and

lower combustion temperatures resulting in lower rate of oxidation of HC and CO.
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Figure 3.15: NO, emission [55] Figure 3.16: Smoke (FSN) [55]

The data in Figure[3.15], NO,, emissions depend strongly upon in-cylinder gas temper-
atures, oxygen availability and residence time available for high temperature gases.
Lower NO, is achieved due to low combustion temperature. In Figure [3.16, HCCI
combustion results in near zero smoke due to higher degree of homogeneity of fuel-air
mixture. The smoke emissions are higher in PCCI. This could be due to fuel wall

wetting because of early direct injection.

Based on the analysis of various combustion parameters in Section3.1.1} it was evident
that the classification of heat release traces is helpful since it allows for identifying
combustion types that have distinct P,,.., MPRR, CAy, CAgg, maximum in-cylinder
temperature, in-cylinder temperature at start and end of main heat release T.,;, and
emission characteristics. This information can be used for properly controlling engine

combustion. Next, it is desired if the classification can be done automatically. To this
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end, different machine learning methods were applied and investigated by evaluating
their accuracy in classifications. On the classified traces, machine learning technique
of supervised learning approach (Convolutional neural network and decision tree) was
evaluated and the classifier prediction accuracy was compared. Unsupervised learning

was also evaluated on the raw data to evaluate the classification.

3.2 Supervised learning - Convolutional Neural

Network

In Supervised learning approach, convolutional neural network is a subset of artificial
neural networks. Convolutional neural network has been proved effective for image
recognition. In [56] the authors designed CNN; for identifying hand written numbers
and it revolutionised application of CNN for image recognition. 1D CNN is used for
identifying heat release rate traces is also built as a combination of series of layers

to extract the prominent feature of the input and assign it to corresponding output

label.
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3.2.1 CNN Theory

The CNN takes the 1D vector of HRR trace and passes it across a multiple layers of
convolutional, pooling and a fully connected layer to obtain output. Output here is
the probability of five different classification bins which could best represent the HRR
trace. First layer of 1D CNN is a convolutional layer with an activation function, in
which elements from the data, as per kernel dimension is taken and multiplied with
the filter weights. Its summed up as a single element in the feature vector. The kernel
slides all through the input data and elements of the the feature vector are arrived.
Number of filters depicts multiple combinations of weights of the filter, to extract
features from input data. Each of theses combination results in a feature vector. All
the feature vectors together constitute the convolutional layer. An activation function
introduces non linearity in the output and helps in making decisions as depicted in

the Figure|3.17. The change in dimension of input data is depicted in Figure [3.18

Pooling is used to reduce the spatial dimension of the feature vector, in order to
reduce the computation involved. Since, pooling operates individually on each of
the feature vectors, though maps dimension reduce, the number of maps still remain
same. In the final layer global average pooling is used, where it reduces the complete
dimension of the feature vector in to a single value. A dense layer is a fully connected

neural network layer where in each node on the input is connected to a node on the
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Figure 3.17: Representation of CNN structure
output. A dropout layer is very similar to dense layer except that when the layer is
used, the activation is set to zero for some random nodes, by using this approach over

fitting is being avoided.

Training of neural network is achieved by adjusting the filter values through back
propagation process. During the training process, initially the weights of the filter
are randomly assigned and so the output probabilities also end up as random values
in the forward pass. The error of the output layer is calculated based on Eq. ,
referred to as loss or total error (L). In order to have the predicted and actual label

to be same, the loss has to minimum.

Total error (L) =) %(T —0)? (3.3)

Where T refers to target probability and O refers to output probability. By using

20



back propagation method, the gradients of the error to weights in the network are
adjusted to minimize error. By using gradient descent, the filter weights are adjusted

in order to minimize. Weight update is carried out based on Eq. ({3.4)).

dL

Where, W is the weight, W, is the initial weight and 7 is the learning rate of the
network. If the learning rate is set too high it results in large jumps and makes
it difficult to reach the optimised point. The process of forward pass, followed by
loss calculation and backward pass is carried out for 500 iterations predefined in the

coding to get a trained model.

When the same image is fed as input into the trained model, the probability results of
the predicted label would more align with the actual label. Thus, the model has learnt
to process the particular heat release trace to the corresponding label. Through the
process of training only the weights of the filter and connection weights get updated.
The structure of the network in terms of number of filters and filter size, remains
the same. The heat release rate traces are classified into bins with the rule based
algorithm. For supervised learning approach part of the data is fed for training the
model and rest is used to evaluate. Thus, 65% of the data is used for training and

the rest 35% of the data is used for testing the model.
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3.2.2 Application of CNN in HRR shaping

1D CNN model was built and tested using keras.It is a python package. In CNN
approach for classifying the heat release rate traces, filter of length 9 with 32 features
is used and the activation function used is exponential linear unit (ELU). Max pooling
is used in the CNN structure built for heat release trace identification. It helps to
reduce dimension of feature map in patches. The layer at end is connected completely
to its earlier activation layers. Depiction of CNN with convolution and pooling layers,
followed by vectored fully interconnected layer resulting in final classification is shown
in Figure [3.17 The dimensions of data as it is processed through multiple layers of

CNN is detailed in Figure [3.18

Layers on convolution and max pooling extract information from the image with the
final dense and dropout layer leading to the classification bins by avoiding overfitting

of model to training data.

3.2.2.1 Prediction Accuracy of CNN model

By evaluating with the testing data, model prediction accuracy is observed to be
70%. The prediction accuracy of the model is documented by using a confusion

matrix, which compares between the actual and prediction. Diagonal elements of the
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Layer (type) Output Shape Param #

convld 1 (ConvlD) (None, 292, 32) 328
max_poclingld 1 (MaxPoolingl (Mone, 97, 32) e
convld 2 (ConwlD) (MNone, 91, B4) 14486
max_poolingld 2 (MaxPooclingl (Mone, 38, 64) a8
convld 3 (ConvlD) (None, 26, 128) 41483
global average_poolingld 1 ( (Mone, 128) e
dropout_1 (Dropout) (None, 128) ]
dense_1 (Dense) (Mone, 5) 645
lambda_1 (Lambda) (None, 5) a8

Total params: 56,453
Trainable params: 56,453
Mon-trainable params: @

Figure 3.18: Data dimensions through layers of CNN
matrix depict The traces, in which true label from data and predicted label by model
are the same. The higher the diagonal elements, the better is the prediction accuracy

of the model.

3.3 Supervised learning - Decision tree

Decision tree is used as a powerful supervised learning model for classification prob-
lem. It is capable of achieving higher accuracy and is highly interpretable. Decision
tree involves sequential hierarchical decisions which lead to final classification. The

model is created by 2 steps including, induction and pruning. Induction is a process
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Figure 3.19: Prediction summary of CNN
in which a decision tree is built, but the nature of training process results in overfit-

ting issue. Through the process of pruning, unnecessary structures from the decision

tree are removed to prevent overfitting.

3.3.1 Decision tree theory

Decision tree consists of node, an evaluation condition of a certain feature.
Edges/Branch, refers to the outcome of a node, which connects with another node.
And, finally leaf nodes, refer to the final outcome resulting in the class labels. Mov-
ing into details of the decision tree used for classification of heat release rate traces,
recursive binary splitting is used at every node. It splits into two at decision making

node. To calculate accuracy of the split at each node, cost of split is evaluated. For a
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classification problem, cost function (Gini Index Function) gives a perspective of the

the goodness of split by the Eq. (3.7)).

G=1-ups?) (3.5)

Where py, is the proportion of class inputs belonging to a particular group. High level
of purity i.e higher value of py is achieved when the the value of G is lower. The
concept of having a single class segregated out is measured by another parameter,
information gain. So at every split decision tree algorithm evaluates all the features
for the highest value of information gain. Then, it is chosen as a condition for node.

It is depicted by the equation (3.8]) below.

Gain(S, A) = Entropy(S) — ZveValues(A)%'Entropy(sﬂ) (3.6)

Where S refers to set of occurrence, A refers to the feature, S, is the subset of S when
A equals to a particular classification value and Values(A) refer to all the possible
values of A in the training data. Entropy refers to measure of uncertainty in the
random variable, it also depicts the impurity of the collection. At each node the same
step step is evaluated till all the classes are achieved as leaf node. But, the issue

associated would be overfitting of the model on the training data.
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3.3.2 Application of decision tree in HRR shaping

To apply the decision tree method on HRR data, MATLAB predefined function fitc-
tree with binary recursive approach is used. The function takes 2 major inputs,
with one being the features and other being labels of classification. So in HRR clas-
sification, the features considered are the engine control input parameters (engine
speed,start of injection of DI fuel, total fuel quantity, pre-mixed ratio and intake
manifold temperature. The output is the true labels for traces identified initially for
training the model. The Figure [3.20| shows the binary recursive classification arrived
at by the decision tree algorithm based on the features of the data. The decision tree
approach is prone to overfitting issue, hence the number of leaf nodes were restricted

to a maximum of 12, to avoid overfitting issue.

3.3.2.1 Prediction Accuracy of decision tree model

Once the decision tree model is determined, testing data is evaluated. The summary
of the true label and predicted is shown in Figure The prediction accuracy of
the model is 74.5%, with diagonal elements signifying the predictions tallying with

the true label.
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Figure 3.20
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Figure 3.21: Prediction summary of Decision tree

3.4 Unsupervised learning - k-means clustering

In unsupervised learning approach, k-means clustering is used to solve a classification
problem. The parent algorithm used for classification of HRR traces is discussed in
Section It is based on multiple thresholds. In order to eliminate bias introduced

by thresholds in training data, an unsupervised approach is being evaluated.

3.4.1 k-means theory

k-means clustering is a popular technique for clustering problem, where centroid

would represent data point in a 2-dimensional data frame. In order to classify the
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centroid would represent a complete HRR trace. k-means clustering starts with ran-
dom initialisation of centroids, cq,cs,...c, of heat release rate data. Since, traces are
intended to be segregated into five bins, k is initialised to 5. Iteration of following

two steps is done, till the centroids converge.

1. In this step each data point based on them minimum euclidean distance is

assigned to the nearest center.

argming..c dist(z — c;)? (3.7)

c; is the centroid belonging to the the collection of Centroids C and each data
point x is being assigned to the cluster based on euclidean distance calculated

by dist().

2. In the second step of the sequence, centroid is recalculated as the mean of data

points assigned to its cluster. The set of data points assigned to i*" cluster is

Si.

1
|.Si]

Algorithm is iterated until the sum of euclidean distance has become minimum and
no data points switch between clusters. A similar approach is carried out through the

complete length of the heat release rate vector to identify the centroid for the cluster
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of traces.

3.4.2 Application of k-means in HRR shaping

k-means clustering approach was used to classify data into 5 bins. Since, each trace is
observed to have different magnitude peak heat release rate it affected the clustering
pattern. The traces were normalised individually to range from 0 to 1, so that traces

could be clustered on its pattern of heat release rate rather than magnitude of peak.

Centroids are chosen randomly at the beginning of the classification and the euclidean
distance of each trace from the centroid is calculated. Traces with the least distance
from the centroid are clustered in a bin. From the clustered traces, centroid is recal-
culated. The process is repeated until the centroid and clustered traces remain same

after consecutive iterations.

Figure depicts the clustered traces, arrived by K-means in 4 different bins.

3.4.2.1 Drawbacks of k-means classification

With k-means clustering approach, two major drawbacks were observed. With mul-

tiple iterations of the clustering, alignment of clustered traces and the centroid of
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Figure 3.22: k-means classification of traces
the bins changed. Due to this, it became difficult to assign a bin to a specific pat-
tern of heat release rate. Second drawback was that, between the clustered traces in
bins, it was difficult to identify distinct differences in heat release rate pattern. This

apparently made the classification difficult to justify unique characteristics of each

bin.

Due to these drawbacks of k-means, supervised learning approach is preferred. First
preference is Decision tree approach leads to a prediction accuracy of 74.5%. Decision

tree is built as a function of key operating conditions of engine and its control inputs.
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The CNN model leads to an prediction accuracy of 70%. CNN model is built as a
function of heat release rate traces from the engine. Use of Machine learning based
approach also facilitates in means to learn from the engine in actual operation scenario
as well. It is discussed further in the future work section on an idea for implementation

of control structure of the above discussed machine learning based models.

Rule based technique, was used to classify HRR traces and classified traces were
used in supervised learning approach to train and evaluate the model. With rule
based classification, distinct characteristics of grouped traces are also observed in

Section [3.1.1. Rule based classified traces are used for identification of scheduling

parameters Chapter 4.
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Chapter 4

Identification of combustion

classifiers

LTC engines heat release rate pattern changes with change in the operating condi-
tions i.e engine speed, intake manifold pressure and temperature) and manipulated
variables (fuel quantity, SOI and PR). Hence, it is evident that heat release pattern
variation is in a multi dimensional data frame. To control complex combustion heat
release in LTC engines, one can use linear parameter varying (LPV) representation
to capture non-linear LTC engine behavior in LPV state space model that can be
used for combustion control. Building up the result in Chapter 3, an LPV model is
developed for LTC engine control. Thus, we need to identify a scheduling parameters

of LPV matrices that can represent the non-linearity of the LTC engine as a function
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of engine conditions and manipulated variables. With proper selection of a scheduling

variables details of change in HRR pattern of the engine can be decoded.

4.1 Scheduling parameter identification

The multi dimensional heat release data frame has to be reduced to a one or two
dimensional space so that identified parameter can be used as a scheduling variable
in the LS-SVM code for building LPV matrices. To this end, principal component
analysis (PCA) and multi variable linear regression approach are evaluated to re-
duce higher dimensions of the data and parameterize the equation with identified

dimensions .

4.1.1 Principal Component Analysis (PCA)

Principal component analysis is the procedure of dimension reduction of the large
data set into a small one which still holds most of the information from the original
data. It is achieved by translating the information from correlated input variables to

principal components.

The first principle component is identified such that it accounts for the maximum

variability contained in the data; thus the subsequent principle components are chosen
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such that it could account for rest of the variability in the data set. The principal
components are arrived as a linear combination of observed variables weighted by the
corresponding eigen values. Values are represented in rotational matrix, which can be
interpreted as the rotation of data in order to achieve projection with greatest variance
along the axis of first principal component. Subsequent principal axes are chosen
such that its geometrically orthogonal.Principal axis identification could be confused
with linear regression. The difference is, PCA works to minimize the perpendicular
distance between the principal component axis and the data point. But, in linear
regression the distance between the predicted and actual value of the data point is

minimized.

Looking into the mathematics behind PCA, data is centered by calculating the mean.
The covariance matrix of the data is calculated as the sum of the product of the co-
ordinate based on the Equation 4.1, with n as the number of observations and X and

Y are set of 2 data columns.

cov(X,Y) = ! e (X = 2)(Yi - 7) (4.1)

n —

Where X refers to data representing operating conditions i.e engine speed, intake
manifold pressure and temperature) and manipulated variables (fuel quantity, SOI
and PR) and Y refers to the classified HRR traces. PCA is evaluated in R Studio, a

statistical software using prcomp function and the rotational matrix with eigen values
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and the variability associated with each of the principle axes is shown in Table [4.1

Table 4.1
Output of PCA on HRR classifier identification

Principal axis Parameter name Pl"OPOI‘thIl of

variance (%)
PC1 Start of Injection 26.4
PC2 Premixed ratio 23.5
PC3 Fuel quantity 20.3
pPC4 Engine speed 16.5
PC5 Intake manifold temperature 9.4
PC6 Intake manifold pressure 3.9

Even though PCA is a powerful tool, it comes with the limitation of missing on non-
linear data patterns. Since, engine data is widely known for its non linear behaviour,
the tool is applied on an evaluation basis to look at the outcome and understand the

variability explained by the technique across different principal axis.

Based on the results of PCA, its evident that start of injection, premixed ratio, fuel
quantity and engine speed have a significant impact in the change of heat release
pattern in data. The variability is potentially spread across, more than 2 axis pa-
rameters. Hence, a method of multivariable linear regression is also looked into as a
potential option for grouping the significant engine inputs arrived through PCA into

regression equation.
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4.1.2 Multivariable linear regression

Multivariable linear regression is a technique to build a model as a function of two
or more explanatory variables and a response variable, by fitting a linear equation
on test data. For a model with p explanatory variables, x;, X2, X3, ...,X, and y as

response variable, the model equation could be represented as

Yi = Bo + Br.xin + Poia + ...+ Bpxip + € 4
4.2

for i=1,2,3,..n
Where n is the number of observations in data. The fit of the model is governed
by the coefficients (5o, f1, Ba,.., Bp) of the explanatory variables and e depicts the
residual term. The residual term accounts for the deviation of the fitted value to the

actual observed value of the response variable.

Most of the occasions the coefficients are computed by statistical software. In theory,
the best line fitting data is evaluated by using a cost function. Cost function is a
sum of squares of vertical distance from each data point to the predicted value by the
fitted line divided by number of observations. These deviations are squared, so that

the positive and negative differences don’t cancel out each other. The cost function
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is described in Equation [4.3]

1
Mean Square Error (MSE) = EZ' (y — ;)? (4.3)

Where y is observed value and y; is the predicted value. With the minimisation of
cost function, the coefficients of the best fit line are arrived. With this approach,

significant engine input parameters could be formulated into a single equation.
4.1.2.1 Application of multi variable linear regression

The classification of heat release traces is based on fraction of early HR and fraction
of late HR. With PCA, the parameters with greater influence on the heat release
classification is identified as start of injection, premixed ratio,fuel quantity and en-
gine speed. As a combination of these parameters, by using regression approach the
fraction of early HR and fraction of late HR are modelled using the identified engine

parameters.

Multiple combinations were evaluated to model fraction of early HR and fraction of
late HR. By using the R~ square value the quality of the model is evaluated. In the

Table [4.2], different combinations evaluated are listed.
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For all the combinations after modelling, the modelled fraction of early HR and frac-
tion of late HR are compared with the experimental data and classification. The
accuracy of classification is also evaluated by calculating the prediction accuracy.
Upon evaluating all the above mentioned combinations, it was observed that the fifth
combination with start of injection, premixed ratio, engine speed and fuel quantity
was observed to have significant R? value and also resulted in better prediction accu-
racy in the LPV - Support Vector Machine based system identification discussed in

Chapter 5.

Fraction of early HR is formulated as

-13.2 +0.012 x SOT -0.47 x PR +0.03 x Speed +0.2 x FQ +0.0026 x SOI* +
0.013 x PR? -2.2 x 107°® x Speed? -7.2 x 1073 x FQ? -2.4 x 1073 x SOI x PR +
1.8 x 107* x SOI x Speed -3.8 x 1073 x SOI x FQ -1.2 x 10™* x Speed x FQ
-1.1 x 107 x Speed x PR +4.5 x 1073 x FQ x PR -1.9 x 1075 x SOI®

-1.2x 107* x PR? +3.6 x 107 x Speed? +1.0 x 107* x FQ?

Fraction of late HR is formulated as

-16.5 4+0.04 x SOI +0.08 x PR -0.04 x Speed +4.5 x FQ -0.025 x SOI?
-3.2x 107 x PR? 44.9 x 107% x Speed? -1.6 x 107 x FQ? +
1.0 x 107% x SOI x PR +5.0 x 107% x SOI x Speed -1.5 x 107%2 x SOI x FQ +

2.7 x 107 x Speed x FQ -3.6 x 107% x Speed x PR -7.3 x 1079 x FQ x PR +
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1.6 x 107% x SOI? +4.5 x 107% x PR3 -1.6 x 107 x Speed® +1.7 x 1079 x FQ3
The classification of heat release types with experimental values of fraction of early

HR and fraction of late HR is shown in Figure |4.1

(Fraction of Early) (%)

-20 -10 0 10 20 30 40 50
(Fraction of Late) (%)

Figure 4.1: Plot of experimental data

With modelled fraction of early HR and fraction of late HR as the scheduling pa-

rameter, the identification of LPV matrices for LTC engine is covered in Chapter

Bl
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Chapter 5

LPV model Identification with

combustion classifiers

Combustion classifiers identified in Chapter (4] is used as scheduling parameter to
build a LPV model of the LTC engine. By using combustion classifiers as scheduling
variable of LPV model, the information of combustion type is inbuilt into LTC engine
model. Support Vector Machine is used for identification of LPV matrices and is

discussed in Section [5.1]
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5.1 Support Vector Machine (SVM)

Support vector machine(SVM) is a supervised machine learning approach. It is used
both as a classification and regression algorithm. SVM for classification, identify
parameters of a hyper plane (line on a 2-dimensional frame) that result in classification
of data. In case of regression, it retains all the features in the data and comes up with

a system equation from training data with maximum margin and minimum error.

Approach of support vector machine is used to build LPV state space matrix as a

function of combustion classifier as scheduling parameter to model the RCCI engine.

5.1.1 LS-SVM system identification

SVM regression approach is used to identify the state space matrices of the engine
model. LS SVM state space matrix at discrete instant of time £, can be represented
as [50]

Xiv1 = Alpr) Xi + B(pr)Ur + K(pr)ex
(5.1)

Yy = C(pr) Xk + D(pr) Uy, + e,
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where X represents states of the system, Y is measurable output of the system

and U refers to the manipulated variable for controlling the system. p repre-

sents the scheduling parameter and e represents stochastic white noise associated.

A(pk),B(pr),C(p),D(px) and K(pg) represent the the state space matrices of the

system and vary as a function of the parameter p,. Equation [5.1]is restructured as

ep = Yy — C(pk)Xk - D(pk)Uk

Substituting back into Equation [5.1

Xiy1 = A(pe) Xi + B(pr)Ur + K (pr)Yr — K (pr)C(pr) Xy — K (pr) D(pr) Uk

Xiy1 = (A(pr) — K(pr)C(pr) Xx + (B(pr) — K(pr) D(pr)) Uk + K (pr)Yi

A = A(pr) — K(pe)C(pr)
B = B(pr) — K(px)D(p)

So, Equation [5.1] can be rewritten as

X1 = A(pr) Xi + B(pe) Uy, + K (pr) Vs

Yy = C(pr) Xk + D(pr) Uk + ek

(5.2)

(5.4)

(5.5)

The plant matrices A (py ), B (pr),C(pr),D(pr) and K(p;) are computed using support

vector machine approach. By taking the training data into SVM framework, the plant

matrices are transformed using weighing matrices( W), regression vectors or features
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of the data (¢) as shown in Equation

Xit1 = Wid1(pe) + Wapa(pr) + Wsds(pr) + €

Yie = Wada(pr) + Wsos(pr) + Ce

where € and ( represent the residual error at the instant k. Equation [5.6|is deduced

further by representing the regression vector(¢) as a function of basis function ()

X1 = W1 (pe) Xi + WaDs(pr)Ur + WPs(pr)Yi + €

Y = Wa®a(pr) X + W5 Ps(pi) Uy + (i

In order to identify the state space matrices the weighting matrices have to be deter-
mined. To optimise the estimation,least square optimisation method is chosen and
the cost function(J) in shown in Equation (/5.8])

1

1
J = SSLIWillE + 55 (6 Ter + GlvG) (58)

where I' and ( represent the diagonal regularisation parameters used on the the
residual errors to avoid overfitting of the training data. ||z||r is the Forbenius norm.

Cost function is optimised by using Lagrange optima identification. The equation
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with Lagrangian multipliers are shown

L(Wy, Wa, Wa, Wy, Wi, €,C,a, ) = J — (555,07 (W1 @4 (pj) X + WaPs(p;)Uj+
WaD3(p;)Y)) + € — Xji1) — S, BT (Wil (pj) X+ (5:9)
Ws®5(p;)Uj + ¢ — Yj)

a; and j3; are Lagrange multipliers at the instant j. Optimum solution is arrived by

taking partial derivative of the Equation [5.9

8614L/1 =0, = Wi =35 ;07 (p;) X7
aawL/Z —0, = Wy =3V a,;0F (p)U"
;—ML@ =0, = Ws=3%,a;95(p;)Y;
;MLQ — 0, = W, =3V 3,07 (p;) X
OL —0, = W =3 8,07 (p)UT  (5.10)
oW ! ’
% =0, = ¢ =X, — W1<Dip(pj)XJ;F - chbg(pj)U]T - WS(DST(pj)Y}T
S_BLJ, =0, = G =Y;— WidT(p)) XT — W5l (p,)UT
g_f; =0, = a; =T¢
g_é =0, = B; =Y

76



Substituting back in Equation

X1 = EéyzlothJT(d>1(pj)T)(<I>1(pk))Xk + Zj'\[:lO‘J'XjT(q)Q(pj)T)(@Q(pk))Uk+
YL X (Bs(py) ") Ya(@s(pr)) + Ty,
Y = S0 85 X7 (@) ) Xe(Palpr)) + X551 85X (D5 (p) ") Uk (@5 (pr)) + 97 B

(5.11)

By applying the kernel trick to reduce (®;(p;)").(®1(px)) with K~*(p;, px). By sub-

stituting results from Equation [5.10]in Equation [5.11] it can be rewritten as

X1 = a2+ T ta
(5.12)

Yy = BE++¢7'

2 and = represent an array of kernel or grammian matrices. Deriving from the

Equation [5.12

vec(a) = (In @ T_1 + Q' L) tvec(Xpi1)
(5.13)

vec(B) = (Iy @ U_y + Z"1,,,) tvec(Yy)

where ® represent the Kronecker product, I,,.,1,,,In all represent the identity matri-

ces and vec refers to vectorization function.
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By applying kernel trick and o and ( identified, Equation [5.11] is restructured as

Xiw1 = 20,05 X] k™ (py, pe) X + 22, 05U k2 (pj, i) Un+
S YOk (pg, p1) Ve + T oy (5.14)

Y = B3 8,X] (k™ (0, i) X + S5, 85U k5 (0, pi) U + 407" By
From the Equation [5.15] the state space matrices could be deduced

Alpr) = S X0k (pi, )
B(pr) = S aUL k2 (pr, )
K(pr) = Sl oY, k2 (1, ) (5.15)
Clpr) = B3 B X5 k2 (b, )

D(pi) = Si1 BeU k™ (p, -)

5.1.2 Test data

To identify LPV state space model for the ITC engine, transient engine data is re-
quired. Transient engine data was collected from the experimentally validated LTC
engine model [4, 5] by varying operating conditions and the control inputs to the
engine. Start of injection (SOI) of the DI fuel, fuel quantity (FQ) and premixed fuel

ratio (PR) are the engine manipulated variables changed during the test. Engine

78



speed was kept to constant 1000rpm.

5.1.3 LTC engine modelling

Using the LS-SVM approach mentioned in Section [5.1.1] Combustion parameters
prediction by coming up with linear parametric varying system matrices is discussed

in this subsection.

States of the system (X) are [CA5 MPRR Ty Py IMEP |7

Manipulated Variables of the system (U) are [SOI FQ PR |

Scheduling parameter of the system (p) is [pl P2 }T,

where p; is fraction of early HR and ps is fraction of late HR

Output of the system (Y) is [CA; MPRR IMEP |7

Hyper parameters to be optimized by the LS-SVM algorithm are

7 Kernel functions associated with each of the system matrix A, B and C

T Sigma functions associated with each of the system matrix A, B and C

T Multiplier associated with each of the system matrix A, B and C
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T Regularisation parameters associated with each of the 5 states of the system

T Regularisation parameter associated with each of the 3 outputs of the system.

5.1.3.1 Model identification results

Identification of hyper parameters associated with LTC engine model with LPV-SVM
approach was accomplished by using the Mode Frontier Optimisation Tool. Details

on the tool ate dj‘j \jj\fi/ W
QAP
VAVAVAVAVA

Engine Cycle

SOI(bTDC)

FQ (mglcycle)
> BRES

PR (%)

Figure 5.1: Manipulated variables of the LTC engine

In Figure the manipulated variables of the LTC engine are shown. The range of
manipulated variables also define the training range of manipulated variables of the
LTC engine model. Other operating parameters like engine speed at 1000 rpm, intake

temperature at 60°C and intake pressure at 96.5 kPa are maintained at a constant

value.
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Figure 5.2: States of the LTC engine

In Figure the states of the LTC engine are shown. The states are estimated by

the experimentally validated LTC engine model.

=

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900
Engine Cycle

Figure 5.3: Scheduling parameters of the LTC engine

In Figure the scheduling parameters of the LTC engine are shown. The range of

both the scheduling parameters cover all three combustion types of interest.
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Figure 5.4: Comparison of measured and modelled output of LTC engine
In Figure the comparison of prediction and measured values of the LTC engine
are shown. 35% of the data used for testing is shown in the plot. The LPV model
is able to predict CAsg, MPRR and IMEP with a RMSE of 0.4 CAD, 0.5 bar/CAD
and 9.6 kPa. Error observed could be associated to the measurement uncertainty
associated with experimental data used to build the model and prediction errors of
the experimentally validated LTC engine. Additionally, the states P,,. and T,,. are
internally calculated since these parameters are very difficult to be measured in the

engine, which can also introduce error int he output.
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5.1.3.2 System matrices

With Mode Frontier, the hyper parameters of the state space model are identified.
The identified hyper parameters summary is listed in Appendix D. Variation in the
coefficients of the the system matrices for the change in the scheduling parameter
are depicted in the figures below and The variation in the elements of
the matrices depict the non-linearity of the LTC engine captured into the state space

model.

Figure 5.5: A(pij,par) matrix elements as a function of scheduling param-
eters
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Figure 5.6: B (pi,p2r) matrix elements as a function of scheduling param-

eters
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Figure 5.7: C(p1k,por ) matrix elements as a function of scheduling param-

eters
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Chapter 6

Control of combustion phasing and

IMEP with MPRR limitation

This chapter centers on system, identification of a multi- input multi- output (MIMO)
state space model for the LTC engine and design of an adaptive MPC for control of

CA;p and IMEP while limiting maximum pressure rise rate.

6.1 LPV identification

System identification by using LPV- SVM approach was discussed in Chapter 5.
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6.1.1 Evaluation of model accuracy

To evaluate the validity of model prediction across all combinations of manipulated
variables, a comparison is carried out with the parent LTC engine physics based model
from the research work [4]. This helped to identify specific zones where the predicted

model accuracy is acceptable for the LTC engine control.

All three manipulated variables, SOI is varied from 0 to 80 bTDC, injected fuel
quantity is varied from 5 to 55 mg/cycle and PR is varied from 0 to 60 to evaluate
prediction accuracy of the LPV-SVM model of LTC engine. The predicted values of
LPV-SVM model is compared with the physics based plant model. Since, LPV-SVM
model is a data-driven model it is observed to be valid only across the trained region

and it is listed in Table [6.2]

Table 6.1
Valid operating region of LPV-SVM model of LTC engine

Manipulated Variable Range
Start of Injection (32 - 45) CAD bTDC
Fuel quantity (18- 27) mg/cycle
Premixed ratio (0-40) %

The Figures [6.1] to [6.3] show the comparison between LPV -SVM model of the LTC
engine and the physics based plant of the engine as a function of scheduling parameters

(modelled values of fraction of early HR and fraction of late HR).
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Figure 6.1: Predicted CAs¢ from (a) LPV-SVM model and (b) physics
based plant model as function of scheduling parameter pl and p2

Comparison between figures ) and [6 -(b shows that the same trend is followed

though prediction variability is observed in CAjy prediction.
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0 0 early HR (modelled) 0 o early HR (modelled)

Figure 6.2: Predicted MPRR from (a) LPV-SVM model and (b) physics
based plant model as function of scheduling parameter pl and p2

Comparison between figures E ) and |6.2 - ) shows that the MPRR prediction is in
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the similar range as that of the RCCI physical model.
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750.00 -,
750.00
700.00 -
700.00 -

650.00 -
650.00 ~
3

)

600.00

IMEP (kPa)

600.00 -

IMEP (kP:

50060 550.00

o 500.00

500.00 -
2 L
4 0

450.00 A ‘5”-“: —

T i
o T S 5 T
10 . 8 p1-Fraction of 10 T s
2 - Fraction of 20 25 10 early HR (modelled) 15 "~ g p1-Fraction of

5
late HR (modelled) p2 - Fraction of 2; T early HR (modelled)
late HR (modelled)

Figure 6.3: Predicted IMEP from (a) LPV-SVM model and (b) physics
based plant model as function of scheduling parameter pl and p2

Comparison between Figures [6.3|a) and [6.3(b) shows that the IMEP prediction is
very close between the LPV-SVM model and RCCI physical model as the prediction

accuracy of LPV-SVM model was observed high for IMEP.

6.2 Model Predictive Control

An MPC controller is designed for combustion control of the LTC engine. The MPC
uses the LPV model from Section [6.2]to predict future outputs of the LTC engine and

optimise the manipulated variables based on the optimisation of cost function. MPC

Toolbox of Matlab is used as part of the design. In LPV-SVM model of the the LTC
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engine, at any instant of operation the system matrices are derived as a function of

p1 (fraction of early HR) and py (fraction of late HR).

6.2.1 Design

Prediction of states and solution to optimisation problem is only arrived for certain
future time steps. The number of future steps in which the output of the system is
predicted is called prediction horizon and the manipulated variables of the system
are optimised for a certain number of steps called control horizon. It is a quadratic
optimisation at each of the control step. Hence, control horizon and prediction horizon

are selected as 20 and 10 engine cycles, respectively.

The solution of quadratic problem (QP) optimisation results in the identification
of manipulated variables of the system. It includes a cost function, whose value is
minimised by the controller. Optimisation is constrained by constraints, which are the
bounds on the manipulated variables, their rate of change, states and outputs of the
system. This results in a realistic and optimal solution. A solution for manipulated

variables minimises the cost function and also fulfil the requirements of constraints.

Cost function is built as a sum of three terms in the current design.

J(Zk) = Jy(Zk) + JAU(Zk) + JE(Zk) (61)
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where z;, is the QP decision over the control interval
k is current control interval

Jy refers to output reference tracking

J Ay refers to manipulated variable tracking

J. refers to constraint violation

Output reference tracking is achieved by the controller cost function.

{ . k+1|k>—yj<k+z|k>]}2 (6.2)

=1 i=

In the equation, p represents the prediction horizon,n, refers to number of plant

outputs, z, is the decision of the QP.
2= [ulklk)”  u(k+10k)" ulk+p—1k)" ] (6.3)

r;(k +ilk) and y;(k + i|k) refers to the reference and predicted value of the j* plant
output at the i*" step of the prediction horizon. s? refers to the scale factor for the
" plant output and Wi-{j is the tuning weight for the j** plant output at the it" step

of the prediction horizon.

The second scalar parameter used by the controller in the cost function to keep the
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rate of change of manipulated variables of the system is

J

INIEAED ) {“’j]’ g+ 18) = e (k + z'|k>>]} (64

Where, n, refers to the number of manipulated variables. s} refers to the scale factor
for the j** plant output and WA;-‘J is the tuning weight for the j** plant manipulated

variable rate of change at the i*" step of the prediction horizon.

The designed controller employs the parameter J, to measure the violation of con-

straints.

Je(2) = pec (6.5)

Where, €, is the slack variable at control interval k and p represents the penalty
weight associated to it. The maximum and minimum limit set on the plant outputs,
manipulated variables and the rate of change of manipulated variables, predominantly

constitute the explicit constraints associated with the MPC,

min‘ k k 'ma:r:‘ y
Bl v < BT i)y ),

1=1:p, Jj=1:nyz
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min 1 k ) — [ k J,max
il vy < LI o tamenD) ),
Sj S] S] (67)
A min A (k — 1|k A max
& u (Z) - EkVAJu'mm( ) — uj( +ul | ) < & u (2)) + EkVA}Lmax@)’
s ’ 5j 5j |

Where, y;min(i) and y; maz (1) refer to the min and max bounds set on the j** outputs of
the system at the i'” step of the prediction horizon. Similarly, W min (i) and W ma. (i)
refer to themin and max bounds set on the manipulated variables and Awu; ., (7)
and Aujmq,(7) refer to the min and max bounds set on the rate of change of the

manipulated variable.

6.2.2 Application

Adaptive MPC is used to track the output, CAsg and IMEP of the system and limit
MPRR by using SOI, fuel quantity and PR as manipulated variables. The control
time step is set to 1 engine cycle. The prediction horizon and control horizon are set

to 20 and 10 engine cycles.
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6.2.2.1 Control structure

Control structure of the desired adaptive MPC controller is shown in Figure{6.4]
Scheduling parameters (pl, p2) are calculated from engine speed, start of injection,
fuel quantity injected and premixed ratio. Based on the scheduling parameters, LPV
matrices of the LTC engine can be identified. These matrices are used by MPC
to predict performance of the LTC engine. CAsy, IMEP and MPRR constraint are
fed to the MPC controller. The LTC physics based plant is fed with manipulated
variables (start of injection, fuel quantity injected and premixed ratio) at each engine
cycle. Kalman filter is used in the schematic to predict the unmeasured states of the
physics based plant. The CA50 and IMEP reference on implementation in an engine,
is derived from the engine speed and torque request to the electronic control module
based on driver operation. The connection of engine speed and torque request are
depicted in dotted line as its not set up in the current model, but are depicted in the

control structure to show model’s relevance to real life operation of engine.

The weights of the allowed rate of change of manipulated variables and output are
tuned to achieve required tracking performance. The weights of the rate of change of
SOl is 0.3, fueling quantity is 0.5 and PR is 0.05. With the setting, PR is the quickest

lever to be changed followed by SOI and fueling quantity.
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Table 6.2
Summary of constraints applied on manipulated variables and outputs of
the adaptive MPC

Variable Minimum constraint Maximum constraint
Start of Injection 32 CAD bTDC 45 CAD bTDC
Fuel quantity 18 mg/cycle 27 mg/cycle
Premixed ratio 0% 40%
CAjxp -10 CAD aTDC% 30 CAD aTDC%
IMEP 500 kPa% 1000 kPa%
MPRR 0% 6%

6.2.2.2 Tracking Performance

The tracking performance of the designed controller to follow the desired change of
CAjqg from 5 to 12 CAD aTDC and IMEP from 525 kPa to 650 kPa. As the system
tracks the change in output by holding MPRR less than 6bar/CAD. The change in
manipulated variables and scheduling parameter of the LPV system is also evaluated

in the various cases depicted in Figures from [6.5] to

In Figure [6.5] the tracking ability of designed controller to follow the desired change
in both CA5y and IMEP is evaluated. Tracking with RMSE of 1.2 CAD for CAj,

IMEP with a RMSE of 6.2 kPa and MPRR is limited to 6.1 bar/CAD.

In Figure[6.6] the tracking ability of designed controller of a LTC engine for a change in
both IMEP and CAjy while the restrictions on MPRR being relaxed to 8bar/CAD.

Tracking with RMSE of 1 CAD for CAsy, IMEP with RMSE of 10.3 kPa and the
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maximum pressure rise rate is limited to 6.3 bar/CAD. Also, with relaxed MPRR,
CAj5g tracking performance improved significantly but the error associated with IMEP

tracking increased.

In Figure [6.7] the tracking ability of the designed controller to follow a change in
outputs of LTC engine with measurement uncertainty is evaluated. The measurement
uncertainty from Table are added to the outputs of the LTC engine physics based
plant, to simulate measurement uncertainty. Tracking with RMSE of 2.2 CAD for
CAs5p, RMSE of 17.3 kPa for IMEP and the maximum pressure rise rate is observed to
be 6.5 bar/CAD. Error in tracking had gone up due to uncertainty in the outputs. In
83" engine cycle, as all the manipulated variables saturate a violation in the MPRR
is observed. The controller comes into action to bring the MPRR within limit in

subsequent cycles.

To compare the effect of selecting proper scheduling variables, the results from this
thesis are compared with those in [5]. To this end, Figure is added in which
LTC engine tracking capability achieved is achieved by using only PR as scheduling
parameter. Tracking was achieved only by using SOI and fueling quantity as the
manipulated variables of the LTC engine. It is evident that the maximum tracking
capability for IMEP was limited due to CAj, tracking errors when IMEP > 650kPa.
In Figure [6.9] the tracking ability of LTC engine to follow the change in IMEP set to

690 kPa with constraints on MPRR set at 6bar/CAD using new scheduling variables
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and also, using PR as the additional manipulated variable. Tracking with RMSE of
1.1 deg for CA5g, IMEP with RMSE of 8.6 kPa and MPRR limited to 6 bar/CAD
was achieved. SOI and PR have almost saturated to its maximum in order to achieve

the target. Reduction in RMSE of CAs5y and IMEP is seen on comparison of Figure

and Figure [6.9

In Figure [6.10 the tracking ability of the designed controller of LTC engine with
CAjp target raised to 14 CAD aTDC while constraints on MPRR set to 6bar/CAD
is shown. Tracking is achieved with RMSE of 1.7 CAD for CAsy, IMEP with RMSE
of 5.8 kPa and the maximum pressure rise rate is limited to 6.2 bar/CAD. PR has
saturated to 40 in order to achieve the target. The motivation for evaluating controller
ability in tracking delayed CA50, comes from the result of work carried out in [57].
It shows that retarded combustion phasing shows benefit of smooth heat release rate

and reduced MPRR.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this research work, classification of heat release rate traces of LTC engine was
developed. Significant engine inputs leading to different HR shapes were identified.
The parameters fraction of early HR and fraction of late HR used for classification
were modelled using significant engine inputs. The modelled fraction of early HR and
fraction of late HR were used as scheduling variables into the LPV-SVM matrices of
the LTC engine model. This model was used to build MPC to control LTC engine.

Major contributions/ findings from this research work are presented below.

104



T Heat release rate data from the experimental study conducted on the LTC
engine were analysed. A rule based classification was developed to classify
HRR traces into three significant combustion pattern similar to HCCI, PCCI
and RCCI. Two transition bins were also identified to create accommodate

traces transitioning between the significant combustion pattern.

1 Characteristics of the distribution of classified traces were studied. Distribu-
tion of combustion parameters like, peak cylinder pressure, maximum pressure
rise rate, CAjy, CAgg, maximum in-cylinder temperature at start and end of
main heat release were analysed. It was observed that combustion parameters
had a distinct characteristics across three significant classification bins and the
information from these parameters could be further used for controlling the

engine.

T As a next step to classify the HRR traces automatically, supervised and un-
supervised techniques of machine techniques were applied. With unsupervised
approach, it was evident that the classified clusters didn’t clearly represent dif-
ferent combustion patterns. On comparison between CNN and decision tree, it

was observed that decision tree prediction with higher accuracy of 74.5%.

T In order to model a LPV matrices of the LTC engine, scheduling parameter of
LPV matrices were identified. PCA was used to identify the significant LTC
engine inputs. SOI, PR ,fuel quantity and engine speed are the significant inputs

of engine combustion. Linear regression was used to model, fraction of early
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HR and fraction of late HR as a function of these significant engine inputs. The
combination of modelled fraction of early HR and fraction of late HR which

resulted in highest R? value was selected as scheduling parameters.

Using Support Vector Machine(SVM) approach, a data driven LPV control
model of the LTC engine was developed. The LPV model used modelled fraction
of early HR and fraction of late HR as the scheduling parameters. The model
was validated with the data generated by the detailed LTC engine dynamic
model. It was able to predict CAsq, IMEP and MPRR with RMSE of 0.4 CAD,

16.6 kPa and 0.4 bar/CAD.

MPC was built to control the LPV model of the LTC engine. It was developed
with the prediction horizon of 20 engine cycles and control horizon of 10 engine
cycles. The controller was able to track CAsg and IMEP with MPRR constraint
of 6bar/CAD with SOI, PR and Fuel quantity as manipulated variables. It was
able to track CAsg and IMEP with RMSE of 1.2 CAD and 6.2 kPa. MPC
performance on CAjq tracking improved with MPRR constraint of 8 bar/CAD.
But, the tracking error of IMEP increased.It was able to track CAsy and IMEP

with RMSE of 1 CAD and 10.3 kPa.

Disturbance rejection capability of the MPC was also evaluated by addition of
measurement uncertainty into the outputs of the detailed LTC physics based
dynamic plant. The MPC controller was able to track CAsq and IMEP of 690

kPa with RMSE of 1.1CAD and 8.6 kPa on MPRR constraint of 6 bar/CAD.
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The controller was also able to track IMEP and CAsy of 14CAD with RMSE of

5.6 kPa and 1.7CAD on MPRR constraint of 6 bar/CAD.

7.2 Future work

Based on the findings of this work, a few areas can be explored further. They are

listed below.

7.2.1 Control architecture for a multi-mode engine using

HRR classification

In order to control the heat release type of the engine real time, an idea of the control
architecture depicted in Figure ([7.1)) can be pursued. The proposed architecture may

consist of multiple blocks:

Architecture consists of multiple blocks.

1 Prediction models including

1. model to predict as a function of control inputs of LTC engine
2. model to predict as a function of HRR trace
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In the following the main blocks in Figure [7.1] are briefly explained

7.2.1.1 Predictive models

Feedback
Cylinder
Pressure

trace

Two predictive models are used in this control structure. One of the predictive model

works as a function of manipulated variables of the engine, like LPV-SVM model built
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in Chapter 5. It is represented as LPV-SVM as a function of inputs in Figure .The
model based on inputs, calculates the scheduling parameters. Based on scheduling
parameters, can predict the HRR type. It can also calculate the output of the LTC
engine, as a function of LPV matrices identified with the scheduling parameters. The
second model, works as the function of HRR trace, like CNN model built in Section

3.2 Tt is represented as Prediction model 2 in Figure [7.1]

7.2.1.2 Algorithm for desired HRR type input

A map based logic is set to identify desired heat release rate type as a function of
engine speed and fuel quantity injected. Also, based on the HRR type is chosen cor-
responding cost function and constraints also are fed to the controller. Cost function
associated with heat release type 1 is to maximise main heat release, with type 2 is
to maximise fraction of early heat release and with type 3 is to maximise fraction of
late heat release. Constraints are rate of change of control inputs to engine and lim-
iting constraints combustion parameters. Limiting constraints are on MPRR, CAjy,
co-efficient of variation of IMEP and emissions. Desired heat release rate type is fed

to the Adaptive model predictive controller(MPC).
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7.2.1.3 MPC controller

Controller block interacts with the LPV-SVM model in order to optimise future con-
trol inputs to the engine plant. Its depicted in the control architecture with the
nomenclature of (k+1). The finalised control input is fed to the engine plant. With
the help of in cylinder pressure transducer on the engine, the feedback cylinder pres-
sure trace is collected and converted to heat release rate as a function of engine crank

angle. By using Prediction model 2, the heat release rate type is identified.

7.2.1.4 Learning Algorithm

Learning algorithm is the final block in the architecture which will ensure that LPV-
SVM model is updated based on real time observations and prediction based on engine

in-cylinder pressure data. This block could consist of three elements.

T Operating conditions to learn

1 Error calculation

1 Learning summary table and update of LPV-SVM model

Engine operating with COVypp < 3% to ensure stability of operation and with no
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occurrence of engine combustion related error are some of the conditions to be con-
sidered for the learning algorithm to learn. An update summary table is setup inside
the learning algorithm, it has the count of region of fueling and engine speed updated
in real life operation. The prediction error(e;) shown in Figure is calculated as
a weighted sum of current prediction by LPV-SVM model and the difference in pre-
diction between LPV-SVM model and Model 2. Once ¢ is calculated, the learning
algorithm updates the value for future reference in both the summary table and pre-
diction LPV-SVM model. The learning process will help the model to update the
prediction as the function of control inputs to reflect real time operating condition of
the engine.Complete operational model with the architecture shown in is still in

the concept phase, it is yet to be built and verified.

7.2.2 Other future works

Here is the list of other ideas to advance the outcomes from this thesis

1 Experimental implementation and validation of the designed controllers from

Chapter 6.

1 Design of LPV data driven models from Chapter 5 using the engine experimental
data, including COVgp, emissions and combustion noise constraints and on

board learning based on real time engine data
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Appendix A

LTC engine data used for
identification of scheduling

parameter

Data tabulated are collected from the LTC engine in APSRC lab for the research

work by references [3],LTC-04
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Appendix B

LTC engine model data used for

LPV-SVM system identification

In the below set of data engine speed was set constant to 1000 rpm, intake manifold
temperature was set to 60°C and Intake manifold pressure was set to 96.5 kPa. The

data was generated by using a physics based LTC engine plant [5].
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Appendix C

Mode Frontier

C.0.0.1 Optimization of hyper parameters of LS-SVM

Optimization of hyper parameters used to build the LPV-SVM model in Section
and Section are carried out by using an optimization tool named Mode
Frontier. Mode Frontier is a multi objective optimization tool. It is a multi-
disciplinary optimization software developed by an Italian software house ESTECO

SpA.

In simpler terms, design of experiments is generated by the tool based on the chosen
optimization algorithm. Each combination of design input parameters i.e. the hyper

parameters are fed to the design software and the outputs,i.e. the RMSE associated
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with prediction of CAsy, IMEP and MPRR are received back by the tool. Based on
the optimization condition and objective set on the outputs, subsequent experiments
are redesigned. Optimization of hyper parameters for LPV-SVM model, is carried out
with Mode Frontier tool tied up with MATLAB LS-SVM code. Every combination
of hyper parameters are evaluated for minimization of RMSE of CAsy, IMEP and
MPRR prediction. The process is iterated till the maximum number of iterations are

reached. Non-dominant sorting genetic algorithm (NSGA) is an extension of genetic

Design Objective &
Variables to be *| constraints of
tuned optimization

Design
Analysis code

Optimization >
Algorithm

Figure C.1: Work flow of Mode Frontier tool

algorithm for optimization of multiple objective problem. Its is an adaptive algorithm,
keeps redefining the inputs based on current population of data to optimise for the
objectives. 4000 number of iterations are run for the model to optimise. If the result
needs further improvement, the best design from current iterations are chosen and

fed as initial combination for the next 4000 iterations.
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Figure C.2: Hyper parameters tuned in Mode Frontier for LPV- SVM
model from Section

Figure is an example of the hyper parameters tuned for[6.2] Seven different kernel
functions are used and they are linear function, radial basis function, polynomial
function, sigmoid function, multi quadratic function, inverse multi quadratic function
and rational multi quadratic function. Mode Frontier could choose one of it. The
kernel functions are defined "unordered” for arrangement with a step size of 1. This
helps the Mode Frontier tool to understand that each kernel function is independent
of another even though they are numbered in a sequence.Other parameters sigma,
multiplier, regularization parameter defined for the states and output are defined as
"ordered” for arrangement. Range of these parameters were arrived by trial and error
in order to provide a wide operating range for the Mode Frontier tool for optimization.

The range of parameters are defined in the Mode Frontier, to optimize are defined in
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Table C.1
Range of hyper parameters defined in Mode Frontier

Name Minimum | Maximum
1 | Kernel Function 1 7
2 | Sigma 0 1000
3 | Multiplier 0 1000
4 | Regularization parameter on states | 0 1000000
5 | Regularization parameter on output | 0 1000000

Table[C.I} For optimization, objective function is defined on the output parameters.

For the LPV- SVM model minimization objective was set on the RMSE of CAjy,
IMEP and MPRR prediction, shown in Figure [C.3] The downward arrow attached

to RMSE of CAjg, IMEP and MPRR represents minimization.

rmse_y CA 50 min
g oJ .

Con_bfr final y CA 50
[ o DmJ final_y_CA_50 +

rmse_y MPRR_min
P X

Con_bfr final v MPRR
| ]
) P OEJ final_y_MPRR

rmse_y _IMEP_min
. N ,
o P

rmse_y_IMEP
Con_bfr_final y_IMEP J?
Oth 4
[ o final_y_IMEP +

Figure C.3: Hyper parameters tuned in Mode Frontier for LPV- SVM
model from Section
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Appendix D

Hyper Parameters Used for

System Identification

The combination of hyper parameters used for system identification of A,B,C from

Chapterb, Section [5.1.3.2] is listed in Table
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Table D.1
Table of hyper parameters for System Identification with A,B and C
matrices

Parameters

Value

Kernel Function A

Inverse multiquadratic function

Kernel function B

Radial basis function

Kernel Function C

Inverse multiquadratic function

Sigma A 915.2

Sigma B 445.2

Sigma C 151.9

Multiplier A 74.47

Multiplier B 445.9

Multiplier C 443.5

Regularisation parameter CA50 422210

Regularisation parameter MPRR 401080

Regularization parameter Tsoc 387890

Regularization parameter Psoc 424120

Regularization parameter IMEP 137420
Regularization Parameter_output CA50 3.8
Regularization parameter_output_MPRR 5.5
Regularization parameter_output IMEP 8.0
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Appendix E

Program and data files summary

E.1 Chapter 1

Table E.1
Figure Files

File Description
Equivalence ratio to temp.png File of Figure

Table E.2
Visio Files

File Description

Chapterl_intro_flowchart.vsdx  Visio file of Figure[1.2]
Content_thesis.vsdx Visio file of Figure
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E.2

Chapter 2

Table E.3
Figure Files

File Description

New_LTC_Engine_Setup.png File of Figure
Data_Setup.png File of Figure
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E.3 Chapter 3

Table E.4
Matlab Data File

Data File Description
Combined_data_RCCI_Nitin_Kaushik_data.mat Data used for classification

Table E.5
Matlab code Files

File Name Description

find_peaks_rev3.m Matlab code used to analyse and perform rule- based classification

(Classification_plot.m Matlab code used to plot classified traces

Plot_normal_dist_revl.m Matlab code used to analyse combustion parameters
characteristics of classified traces

Decision_tree_5_bin.m Matlab code used to create Decision tree model

Shifting HRR _trace revl.m Matlab code for shifting and normalising heat release rate
to evaluate traces for k-means
HRR_K_Means_5_bin.m Matlab code to do k-means classification

Table E.6
Python code

File Description

regimeClass.py Python code used to build CNN model

Table E.7
Visio Files

File Description
Classification_flow_chart.vsdx Visio file of the Figure
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Table E.8
Figure Files

File Description
flow_chart.png Figure (3.2
emission_01.png Figure |3.12
emission_02.png Figure |3.13
emission_03.png Figure [3.14
emission_04.png Figure [3.15
emission_05.png Figure |3.16
Presentation_ CNN.png Figure |3.17
CNN_data_size.png Figure |3.18
CNN_Prediction_summary.png Figure |3.19
Decision_tree.png Figure [3.20
decision_tree_Prediction_summary.png Figure |3.21

Table E.9
Matlab Figure Files

File Description
heat release_C3.fig Figure 3.1
Combustion regime_plot_revl.fig Figure [3.3
cov_imep.fig Figur43.4
P_max kPa.fig Figure |3.5
MPRR.fig Figure [3.6
CA_10_HR.fig Figure [3.7]
CA_90_HR.fig Figure 3.8
IN _cy_Temp.fig Figure 3.9
T_SOM_K. fig Figure [3.10
T_EOM K fig Figure |3.11
kmeans_bbin.fig Figure |3.22
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E.4 Chapter 4

Table E.10
Matlab code

Data File Description
Plot_scatter.m Matlab code for plotting Figure

Table E.11
Figures

Data File Description
3clusters_exp_0.fig Figure

Table E.12
Rstudio data and Code

Data File Description

R_data_revb_ 2804 _typel 2 3.csv Data with 3 clusters for PCA
and Linear regression

project.R RStudio code for PCA and
Linear regression Table ,
Plot_scatter.m Matlab code for Figure
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E.5 Chapter 5

Table E.13
Matlab code

Data File Description
sch_par_model_mF _script_ver5_ ABC.m Matlab code for SVM- modelling of the
and its sub functions system with ABC matrices and to
generate Figure ﬂ to
contourplot_matrix_v2_2sch_var.m Matlab code for generating contour plot
of figure m to
Table E.14
Data file
Data File Description

LPV_data_Aditya.mat Dataset used to train SVM- LPV model and test it.

Table E.15
Figure files

C_matrix_ ABC.fig Figure

Data File Description
Input_1.fig Figure |5.1
States.fig Figure [5.2
scheduling_parameter.fig Figure 5.3]
normalised_Output_ABC.fig Figure 5.4
A matrix ABC fig Figure [5.5
B_matrix_ ABC.fig Figure @
5.7
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E.6 Chapter 6

Table E.16
Figure files

Filename Description
Comparison_P1_P2 set2range CA50.fig Figure 6.1
Comparison_P1_P2_set2range IMEP.fig Figure 6.2
Comparison_P1_P2_set2range_ MPRR.fig Figure 6.3
MPC Control Model Schematic_0108_revl.png Figure 6.4]
Casel fig Figure [6.5
Case2.fig Figure (6.0l
Casel dist.fig Figure (6.7
Cased_comp.fig Figure 6.8
Cased.fig Figure 6.9
Cased.fig Figure |6.10
Table E.17
Visio files
Filename Description

MPC Control Model Schematic_0108_revl.vsdx File for the Figure

Table E.18
Matlab code

File name Description

Simulate_LPV_model.m Simulink model to evaluate model accuracy
Surface_plot_prediction.m Matlab code to create surface plots

from Figure to Figure
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Table E.19
Simulink files

File name Description

LPV_SVM prediction.slx Simulink for evaluating model accuracy

LPV_MPC_rev6.slx Simulink with the designed MPC controller
Table E.20

Matlab Data

File name Description

model_verification_set_to_Range.mat  Steady state data of model and RCCI engine
MPC_opt_workspace_rev9_thesis.mat Matlab parameters for running MPC
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E.7

Chapter 7

Table E.21
Figure file

File name Description

Future_work.png Figure
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E.8 Appendix A

Table E.22
Data file

File name Description

Combined_data_RCCI_Nitin_Kaushik_data.mat Data used for classification of HRR

E.9 Appendix B

Table E.23
Data file

File name Description
LPV _data_Aditya.mat Data used for LPV-SVM identification of LTC engine

E.10 Appendix C

Table E.24
Figure file
File name Description
Mode frontier.png Figure |C.1

mode_frontier_2.png Figure |C.2
output_constraints.png FigurgC.3
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